STATISTICAL PHYSICS FOR ADAPTIVE DISTRIBUTED CONTROL

David H. Wolpert

NASA Ames Research Center

http://ic.arc.nasa.gov/people/dhw/

NASA-ARC-03-097

THE GOLDEN RULE

DO NOT:

Find a value of a variable x, that optimizes a function

INSTEAD:

Find a distribution over x, that optimizes an expectation value

<u>ADVANTAGES</u>

- 1) Arbitrary data types.
- 2) Leverages continuous-space optimization. ("Gradient descent for symbolic variables".)
- 3) Akin to interior point methods.

- Deep connections with statistical physics and game theory. So
 - Especially suited for distributed domains.
 - Especially suited for very large problems.

ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

WHAT IS DISTRIBUTED CONTROL?

1) A set of N agents: Joint move $x = (x_1, x_2, ..., x_N)$

2) Since they are distributed, their joint probability is a product distribution:

$$q(x) = \prod_i q_i(x_i)$$

• This definition of distributed agents is adopted from (extensive form) noncooperative game theory.

EXAMPLE: KSAT

- $\bullet \qquad x = \{0, 1\}^{N}$
- A set of many disjunctions, "clauses", each involving K bits. E.g., $(x_2 \lor x_6 \lor ^\sim x_7)$ is a clause for K = 3
- Goal: Find a bit-string x that simultaneously satisfies all clauses. G(x) is #violated clauses.
- For us, this goal becomes: find a $q(x) = \prod_i q_i(x_i)$ tightly centered about such an x.

The canonical computationally difficult problem

ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

REVIEW OF INFORMATION THEORY

1) Want a quantification of how "uncertain" you are that you will observe a value i generated from P(i).

2) Require the uncertainty at seeing the IID pair (i, i') to equal the sum of the uncertainties for i and for i'

3) This forces the definition

uncertainty(i) = -ln[P(i)]

REVIEW OF INFORMATION THEORY - 2

4) So expected uncertainty is the Shannon entropy

$$S(P) \equiv -\sum_{i} P(i) \ln[P(i)]$$

- Concave over P
- $\nabla(P)$ is infinite at border of space of all P

5) *Information* in P, I(P), is what's left after the uncertainty is removed: -S(P).

ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

ITERATIVE DISTRIBUTED CONTROL

- 1) s is current uncertainty of what x to pick, i.e., uncertainty of where q(x) is concentrated.
 - Early in the control process, high uncertainty.
- 2) Find q minimizing $E_q(G)$ while consistent with s.
- 3) Reduce s. Return to (2).
- 4) Terminate at a q with good (low) $E_q(G)$.

Can do $(2) \rightarrow (3)$ without ever explicitly specifying s

ITERATIVE DISTRIBUTED CONTROL - 2

1) The central step is to "find the q that has lowest $E_q(G)$ while consistent with S(q) = s".

2) So we must find the critical point of the Lagrangian

$$L(q, T) = E_q(G) + T[s - S(q)],$$

i,e., find the q and T such that $\partial L/\partial q = \partial L/\partial T = 0$

• Deep connections with statistical physics (L is "free energy" in mean-field theory), economics

3) Then we reduce s; repeat (find next critical point).

EXAMPLE: KSAT

1)
$$S(q) = -\sum_{i} [b_{i} \ln(b_{i}) + (1 - b_{i}) \ln(1 - b_{i})]$$

where b_{i} is $q_{i}(x_{i} = TRUE)$

2)
$$\mathbf{E}_{q}(G) = \sum_{clauses j, x} q(x) K_{j}(x)$$

 $= \sum_{clauses j, x, i} \prod_{i} q_{i}(x_{i}) K_{j}(x)$
where $K_{j}(x) = 1$ iff x violates clause j

Our algorithm: i) Find q minimizing $E_q(G)$ - TS(q); ii) Lower T and return to (i).

ROADMAP

1) What is distributed control, formally?

2) Review information theory

3) Optimal control policy for distributed agents

4) How to find that policy in a distributed way

DISTRIBUTED SEARCH FOR q

So control reduces to finding q such that $\partial L/\partial q = 0$

1) Since the agents make their moves in a distributed way, that q is a product distribution.

- 2) But they must also find that q in a distributed way.
- 3) There are two cases to consider:
 - i) Know functional form of G.
 - ii) Don't know functional form of G must sample.

MINIMIZING L(q) VIA GRADIENT DESCENT

1) Each i works to minimize $L(q_i, q_{(i)})$ using only partial information of the other agents' distribution, $q_{(i)}$.

2) The $q_i(x_i)$ component of $\nabla L(q)$, projected onto the space of allowed $q_i(x_i)$, is

• The subtracted term ensures q stays normalized

GRADIENT DESCENT - 2

- 3) Each agent i knows its value of $ln(q_i(x_i))$.
- 4) Each agent i knows the $E_{q_{(i)}}(G \mid x_i)$ terms.

Each agent knows how it should change its q_i under gradient descent over L(q)

- 5) Gradient descent, even for categorical variables (!), and done in a distributed way.
- 6) Similarly the Hessian can readily be estimated (for Newton's method), etc.

EXAMPLE: KSAT

1) Evaluate $E_{q_{(i)}}(G \mid x_i)$ - the expected number of violated clauses if bit i is in state x_i - for every i, x_i

2) In gradient descent, decrease each $q_i(x_i)$ by

$$\alpha[\mathbf{E}_{q_{(i)}}(\mathbf{G} \mid x_i) + \mathbf{T} \ln[q_i(x_i)] - \mathbf{const}_j]$$

where α is the stepsize, and const_j is an easy-to-evaluate normalization constant.

3) We actually have a different T for each clause, and adaptively update all of them.

ADAPTIVE DISTRIBUTED CONTROL

- 1) In *adaptive* control, don't know functional form of G(x). So use Monte Carlo:
 - Sample G(x) repeatedly according to q;
 - Each *i* independently estimates $\mathbf{E}_{q_{(i)}}(\mathbf{G} \mid x_i)$ for all its moves x_i ;
 - Only 1 MC process, no matter how many agents

So each q_i can adaptively estimate its update

EXAMPLE: KSAT

- i) Top plot is Lagrangian value vs. iteration;
- ii) Middle plot is average (under q) number of constraint violations;
- iii) Bottom plot is mode (under q) number of constraint violations.

CONCLUSION

- 1) A distributed system is governed by a product distribution q, by definition.
- 2) So distributed adaptive control is adaptive search for the q that optimizes $E_q(G)$.
- 3) That search can be done many ways, e.g., gradient descent, with or without Monte Carlo sampling.